

Onboard spending and interior design

Peak season vs shoulder/winter season

How we develop an optimum layout and flow

- Optimising income during the busy season
- Reducing expenses in the off-peak or shoulder periods
- Ensuring smooth passenger flow across both periods
- Minimise cost when demand is low (crew, cleaning, HVAC etc.)

Synergies between port and ship

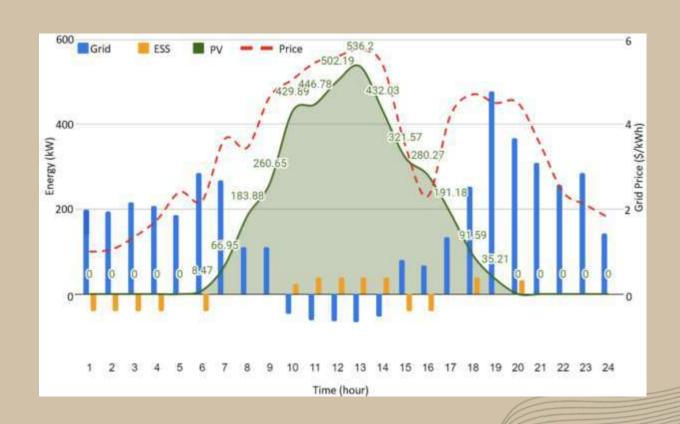
Shore Charging and fuel strategy

How we utilise electricity and reduce fuel taxes

- Electrification should be part of all shipowners fuel strategies
- Shore charging vs shore power
- Collect what's possible
- Future proof with more capacity
- Include both OPEX and CAPEX in your total cost of owner ship model
- Avoid aux. engines running during manoeuvring and in port
- Batteries power always available

Shore based energy storage systems

How we reduces the cost for grid connection


- Islands have limited power
- Transformer stations are often central positioned on islands
- Cable connection shall be established over long distances
- Approval processes are often very complicated
- Ferry charging high power demand for a limited period
- Grid connection expensive

How we ensures power availability and lower energy cost for the ferry operator

- Peak shaving & load balancing
- Stabilize grid frequency and voltage
- Store excess renewable power
- BEES charges when demand is low and discharges when price is high
- Limited transformer connection
- Lower ferry operating costs

Electrification and fuel/energy strategies

OSK

New possibilities with electrification

Vessel type: Battery-electric high-speed

catamarans

Size: 129m long, 30.5m beam

Capacity: 1,483 pax

500 cars

Speed: >40 knots

Crossing: 1,5 hours

Battery: ~45,000 kWh

Charging: 55 MW, 30 min

 CO_2 : reduction ~132,000 t/y

+3 hours Battery operated ferry

New standards for electrification of larger ferries

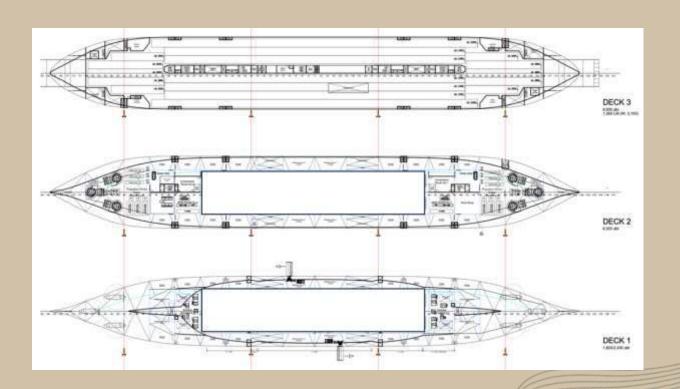
Vessel type: Battery-electric double ended

ferry

Size: 200m x 30m

Capacity: 2,000 pax, 2300 LM

Hull material: Steel & alu


Lightweight HSC type furniture and

Interior interiors

Battery: ~80,000 kWh

Shore ramps: Two tier loading

Proposed Design – more than 3 hours crossing – Energy balance What can be achieved

	kWh	Maks kW	Speed	kWh/hr	Distance
Route 1 – 3h 15min	43674	16678	22,8	13438	65 nm

N	Existing vessel				
		Tons Co2 pr	Tons Co2 pr		
kWh pr crossing	gram co2/kWh	crossing	crossing (MRV)		
43.674	41	1,8	43,4		

Similar results can be obtained at:

Frederikshavn – Göteborg

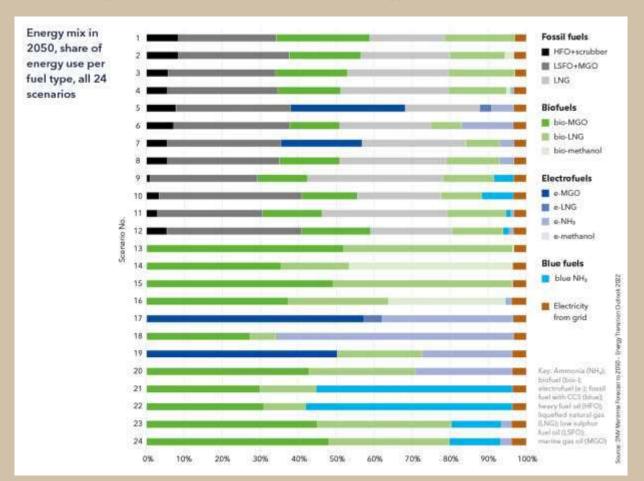
Tallink - Helsinki

Visby – Stockholm


In 2024, the average CO2 emissions from electricity generation in Sweden are approximately 41 grams of CO2 per kilowatt-hour (gCO2/kWh)

LightCraft^{OSK}

LightCraft^{OSK} A series of aluminium lightweight double enders


LightCraft^{OSK}
What can be achieved - compared to recent newbuildings


	Electrical	Electrical	Electrical	Electrical	Electrical	Conventional		Electrical
			As LightCraft		As LightCraft		As LightCraft	
	Ellen	Grotte	Grotte	Nerthus Tyrfing (Ballen Kalundborg)	Tyrfing	MF Princesse Isabella	MF Princesse Isabella	Flex95
Length o.a. (m)	59,50	49,90	49,90	116,80	116,80	99,90	99,90	95,00
Beam (m)	12,80	13,40	13,40	18,20	18,20	18,00	18,00	18,50
Speed (knots)	14,00	11,50	11,50	17,00	17,00	15,00	15,00	15,00
Propulsion Power (kW)	1.500	750	750	3.600	3.600	3.200	3.200	2.100
BESS installed (kWh)	4.500	1.100	600	3.800	3.800	N/A	1.900	2.000
Gross Tonnage	996	925		4.318	4.058	5.087	4.749	4.000
Lightweight (ton)		550	300	2.400	1.400	2.500	1.200	1.000
Deadweight (ton)	192	230	230	600	600	600	600	650
Displacement (DWL)		780	530	3.000	2.000	3.100	1.800	
Private Car Capacity (PCU)	31	33	33	188	188	163	163	129
Passenger Capacity (summer)	196	396	396	600	600	600	600	450
Construction	Steel/Alu	Steel/Alu	Alu	Steel/Alu	Alu	Steel	Alu	Alu
Crossing Time		10	10	105	105	60	60	60
Propulsion Energy per Crossing (kWh)		90	60	1.995	1.295	1.850	1.200	1.100
Crossing Distance (nm)	11,5	1,3	1,3	17,8	17,8	11	11	_11
Distance DWT (ton nm)		299	299	10.680	10.680	6.600	6.600	7.150
Energy per DWT nm (kWh/DWT nm)		0,301	0,201	0,187	0,121	0,280	0,182	0,154
Savings if LightCraft			33%		35%		35%	
						`		

Energy blending

Future energy mix is a combination of several energy carriers

Key takeaways

- Onboard flow should support passenger experience outside peak time operation
- Include scenarios for both off-season as well as service offerings in your accommodation layout
- Electrification should be part of every shipowners fuel strategies
- Fuel strategy is not binary but should adopt to future opportunities for electrification
- Electrification is possible for larger ferries for more than 3,5 hours crossing time

Questions and discussion?

Steered by Vision. Powered by Insight