

RIR

RINA approach The perfect cocktail: alternative fuels, green tech, digitalization.

The IMO approach

The IMO approach

- EEDI framework for new ships in place since since 2013.
- EEXI framework for existing ships in 2023.
- CII framework from 2023 onwards.

Technical Measures

EEXI Compliance

52

Introduction of an Engine Power Limitation (EPL) or Shaft power limitation (ShaPoLi)

- Introduction of energy efficient consumers
- Reconsideration of Electrical Power Table
 - Capacity increasing
 - Speed increasing by means of hydrodynamic improving devices
- $O_{O}^{\circ}O_{O}^{\circ}$ Innovative energy efficiency technology

RI R

Focus on EEXI: Ro-ro ships

ELECTRIC POWER TABLE				 EPT Annual average from onboard monitoring 		 Correction factor f_j for ro-ro cargo and ro-ro passenger ships (f_{jRoRo}) fixed Froude number, 		 New capacity correction factor f_{cVEHICLE} for ro-ro cargo (vehicle carrier) 		
Ship type	Size	Reducti on factor	Equivale nt EEDI Phase	 Approximated value of power of auxiliary engines 		F _{nL} , with sl design spe	hip ed at		ouniory	
Ro-ro cargo ship (vehicle carrier)	DWT >= 10,000	15	2			75% of MC	R			
	DWT >= 2,000	5	1							
Ro-ro cargo ship	1,000 <= DWT < 2,000	0-5	1	Power of auxiliary		Power correction			Capacity correction	
Ro-ro passenger ship	DWT >= 1,000	5	1	auxiliary engines P _{AE(i)}			renter o		factor f _{jVEHICLE}	3
	250 <= DWT < 1,000	0-5	1			factor f _{jRoRo}	Fr.			
		P_{AE}	$_{app} = 0$	$.866 \times \mathrm{GT}^{0.732}$	[k\	<i>N</i>]		r		

- Guidelines of the method of calculation of the attained EEDI for new ships Res. MEPC.308(73) as amended
- Guidelines on the method of calculation of the Attained EEXI Res. MEPC.333(76)
- Guidelines on survey and certification of the EEXI Res. MEPC.334(76)
- Guidelines on the shaft/engine power limitation system to comply with the EEXI requirements and use of a power reserve Res. MEPC.335(76)

RINA GUIDE FOR THE EVALUATION OF ENERGY EFFICIENCY EXISTING SHIP INDEX (EEXI)

Operational Measures CII – Carbon Intensity Indicator

For ship rated D for 3 consecutive years or rated as E, the Statement of Compliance shall not be issued unless the above actions are carried out.

The Significance of CII

- For first time ever, ships are ranked
- Ranking is based not in fuel consumption, but in terms of CO2 emissions

Any solution that aims at decarbonization must fulfill first the requirements of CII

- An Owner may:
 - Either avoid to build new ships: beyond 2030, ships of current technology will be under extreme pressure since it will be practically impossible to maintain high CII rating without a generous discount of speed, which will render them as not competitive any more
 - Order New ships: Having a fuel oil ship, and Waiting for zero carbon fuels, will be equivalent to an existing ship, with same difficulties to remain competitive

It seems the most challenging decision for an Owner, is depending the age of his fleet, when to replace it with new ships and of which technology

The EU approach

EU Fit for 55 Package

EU Fit for 55 Package Maritime-related proposals

EU Fit for 55 Package DRAFT ETS Directive

The main changes to the ETS Directive, compared to the text proposed by the Commission, are the following:

- from 1 January 2024 the allowances to be surrendered are equal to 100% of the emissions (without phase-in period);
- 2) 2) from 1 January 2027, ETS also applies to ships between 400GT and 5000GT (and MRV is modified accordingly);
- obligation to have a contractual clause in the event that the ship is not operated by the shipowner;
- 4) the establishment of the Ocean Fund a fund for investments in the maritime sector, which includes 75% of the proceeds from the emission quotas returned by the dedicated maritime sector;
- 5) 5) clause to revise the Directive in the event that the IMO adopts international measures.

- Ships above 5000 GT, intra-EU voayages, 50% extra-EU voyages, EU ports
- Definitions of Shipping Company and Administering authority
- Company shall submit to the responsible administering authority the verified aggregated emissions data (based on MRV Regulation) at Company level that covers the emissions in the reporting period
- By 30 April of each year, Company shall **surrender a number of allowances** equal to its total emissions
- Phase-in period of allowance surrendering
 - 20 % of verified emissions reported for 2023
 - 45 % of verified emissions reported for 2024
 - 70 % of verified emissions reported for 2025
 - 100 % of verified emissions reported for 2026 and after
- Penalties in case of non-compliance

RI

EU Fit for 55 Package DRAFT FuelEU Maritime Regulation

-75%

Overview

- Same scope as in ETS (ships above 5000 GT, intra-EU voayages, 50% extra-EU voyages, EU ports)
- GHG intensity of the energy used on-board introduction of limits on the yearly average GHG intensity of energy used on-board (CO2eq/MJ)
 Maritime targets on the limits on greenhouse gas intensity of the energy used on-board compared to 2020
 2025
 2030
 2035
 2040
 2045
 2050

-6%

-13%

-26%

-59%

• OPS or zero-emission technology compulsory as of 2030 for containerships and passenger ships

-2%

- Possibility of banking and borrowing of compliance surplus between reporting periods
- Possibility of pooling of compliance between two or more ships, even of different Companies but with the same verifier
- Penalties in case of non-compliance
- EU Fuel Certificate of Compliance to be kept on board

Marine Decarbonization Strategy Alternative fuels... and?

- Many solutions are presently investigated
- One solution will not 'fit for all'
- The shipping industry will not be the main player to take the decision on the fuel(s) that will decarbonize the sector

RINA strongly believe that "**to be prepared**" is key factor in this transition

Where we are with alternative fuels?

GREEN TECHNOLOGIES

H2 Fuel cell Projects

First hydrogen boat in Venice

Venice saw its first hydrogen boat circling its canals on **April 6, 2009**. Developed by Venezia Tecnologia, a Venice based company, in cooperation with ENI and co-financed by the Italian Ministry of Environment and the Veneto Region, the 7 m boat features two 5 kW PEM fuel cells.

HEPIC Project - Alilaguna& C.N. Vizianello

Small passenger ship intended for Laguna Venice Service -**2016**. The design based on **compressed Hydrogen Fuel Cells** is completed. The use of Hydrogen on the ship is on hold waiting for the approval of the Flag Administration.

TecBIAProject - FINCANTIERI

Experimental ship intended for Fuel Cells testing.

Based on Hydrogen stored in tanks. **Fuel Cell will develop up to 120kW**, Lithium Batteries up to130kW, stored Hydrogen up to50kg.

Now under construction in Fincantieri Castellamare, delivery expected first quarter 2022

Future Fuels – RINA Rules & IMO updates

RINA RULES	Ammonia	LPG	LNG	Hydrogen	Methanol	Nuclear
Fuelled ready	Completed	Completed	Completed	Completed	Completed	2022
Fuelled	Completed	Completed	Completed	Completed	Completed	2022

IMO work done

- MSC.1/Circ.1621 Guidelines for the Safety of Ships using Methyl/Ethyl Alcohol as Fuel
- MSC.1/Circ.1647 Interim guidelines for the safety of ships using fuel cell power installations

IMO Work in progress

MSC 105 (April 2022) agreed to:

- develop guidelines for the safety of ships using ammonia as fuel (by 2023);
- review of the interim recommendations for carriage of liquefied hydrogen in bulk; and
- consider the impact on safety from the use of potential GHG reduction solutions such as ammonia, hydrogen, biofuels, dimethyl ether, nuclear power, and carbon capture and storage systems.

Alternative Fuels

Hydrogen ΔH Laboratory

Materials development and qualification for high pressure gaseous H2 transportation and storage equipment.

Test on materials SMALL SCALE unit Fatigue, Fracture Mechanics, SSR

H₂ test pressure up to 1000 bar Hydrogen Piping & Pipelines

US standards (ASME B31.12, ASME BPVC, ASTM E1681) and the European guideline (EIGA, IGC Doc 121/14)

Test on components Full Scale

Test on nano-materials HPCT unit

H₂ test pressure 100÷1000 bar **Test on component and storage equipment**

H₂ test pressure 0÷300 bar **Test on adsorption**

Alternative Fuels full scale test H2 and CH4

Alternative Fuels Hydrogen Combustion Laboratory

Hydrogen Combustion Laboratory (Dalmine) Material for Storage and Transportation - Industrial burner assessment & qualification

- Development / validation of existing / new industrial burners for H_2 / N_2 - NG mixtures

Hydrogen Burner performances assessment (Steel Making, Glass, Cement, Ell)

- Assess the feasibility to use both existing and on purpose developed burners and associated piping and fittings, with different H2 - NG mixtures from both technical and regulatory perspectives
- Potential Costs savings associated with CO₂ quote reduction
- Impact on HSE (ATEX) and on characteristics of the thermally treated steel material

Retrofitted with two vent foils (wings) from Econowind

RINA carried out:

- the design approval
- survey of vent foil production and installation
- supervision of the commissioning

GREEN TECHNOLOGIES

Our Experience

Vessel Ankie

- General Cargo
- DWT: 3,600 t
- Retrofit year: 2020

https://www.rina.org/en/media/news/2021/12/09/wind-assisted-vessel

GREEN TECHNOLOGIES Our Experience

Vessel Tharsis

- General cargo
- DWT 2300 t
- Retrofit year: 2021

Retrofitted with Wind Assisted Propulsion System Twinfoils by Econowind

RINA carried out:

- the project design approval
- Construction supervision

GREEN TECHNOLOGIES

Our Experience

Vessel Tharsis

- General cargo
- DWT 2300 t
- Retrofit year: 2020

Retrofitted with fluidic air lubrication system by Marine Performance System

RINA carried out:

- the project design approval
- Construction supervision

www.marineperformancesystems.com

GREEN TECHNOLOGIES

Our Experience

Vessel Eco Valencia & Grimaldi Group Ro-Ro

- Carriers
- 12x RO-RO cargo vessels
- DWT 24000 t
- Year: 2020
- New Buildings with air lubrication system by Silverstream

RINA carried out:

- the design approval
- survey of production and installation
- supervision of the commissioning

GREEN TECHNOLOGIES – **OSV Battery Retrofit**

Supply vessel with DP2 and power

supply from ion-lithium battery system.

Shipyard: Havyard Ship Technology
Shipowner: Skansi Offshore
Type: Offshore Support Vessel
Size: 4000 GT
Special Feature: Battery Powered Ship 565kW/h
Notations: ICE class, DYNAPOS DP2,Green Plus

"LNG ready" Cruise Ferry for MOBY

Shipyard: Guangzhou Shipyard International (CSSC)
Shipowner: MOBY
Size: : 2+2 × Ro-Ro passenger ferry (3,765 lm; 2,500 pax)

The ships, LNG ready, will be able to reach 25 knots speed with highest comfort standard

LNG Passenger Ferry for Balearia

Shipyard: Cantiere Navale VisentiniShipowner: BaleariaSize: 2 × Ro-Ro passenger ferry (25,000 GT; 810 pax)

The ships will be able to reach 24 knots speed with a total power of 20,600 KW CO₂ and NOx emissions reduced by more than 40%

GREEN TECHNOLOGIES The role of CCUS

CO2 emissions reductions in the energy sector in the Sustainable Development Scenario relative to the Stated Policies Scenario

Source: https://www.iea.org/reports/ccus-in-clean-energy-transitions/ccus-in-the-transition-to-net-zero-emissions

CCUS will have a special role in reducing global GHG emissions

GREEN TECHNOLOGIES The role of CCUS

(Source: https://zeroemissionsplatform.eu/about-ccs-ccu/css-ccu-projects/)

RIR

Nowadays, there are at least 182 ongoing carbon tech projects in at least 14 different countries, including the U.S., Canada, Germany, China, and India.

In Europe, there are projects on track to become operational before 2030, and the map presents the market-ready projects, provided that supportive policy and financial frameworks are in place.

GREEN TECHNOLOGIES Steam Methane Reforming

DEGI-CARBONIZATION The RINA Digital Offer at a Glance

TECH. MANAGEMENT & OPTIMIZATION	SERTICA Fleet Management System	Optimum Fleet performance management suite, creating value from big data	Voyage Optimization Spped optimization and weather routing module
COMPLIANCE	Forms MRV - DCS Making crew reporting easier and allow compliance with EU & IMO regulations	ELB Electronic Logbooks for simplified and verified reporting onboard	IHM Maintenance Stand-alone application or bundle with HazMat Expert support service
		Inspection Master Record PSC Inspections and manage company checklists inspections/ audits	KIBER Helmets & Apps Technology for remote and smart inspections

- Navigation, Automation
- Manual Input

OPTIMUM

External Data

- Realtime Monitoring
- Traditional Methods
- Machine Learning

- Drydock Planning
- Intervention Analysis

RIR

EEOI/CII status

Comply with new regulations

of the vessels

way

efficiency to ensure compliance

Optimize Voyage

OPTIMIZE

Enter simulation mode and understand how to improve efficiency and meet the targets with the actual fleet.

RI R

Make it sure, make it simple.