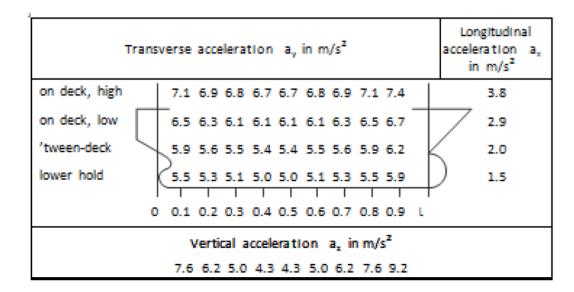
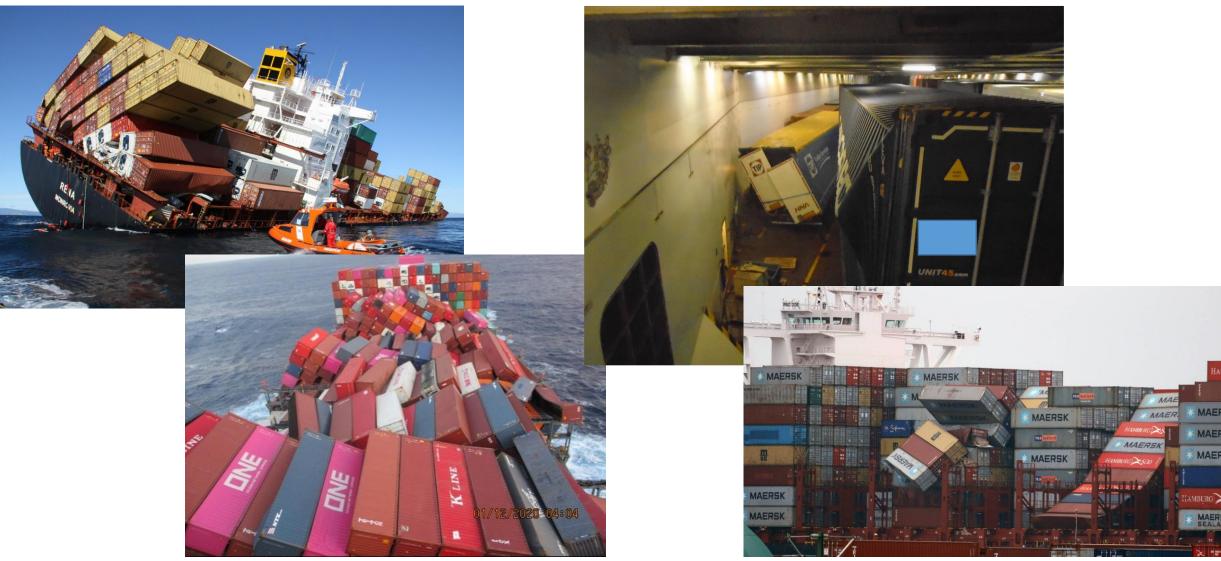

SIRI MARINE after the amended IMO - CSS code (MSC.1/Circ.1623)



Genesis & Evolution

(with a special thanks to Professor Captain Hermann Kaps)


- The CSS code is the international accepted "lashing bible" for cargo vessels
- An IMO guideline, implemented by almost all member states
- The basis for Cargo Securing Manuals and cargo lashing principles for ALL vessel (except container & wet/dry bulk vessels) CSM's are STATUTORY DOCUMENTS!
- First issued in the 1990's, with a number of amendments since then
- A calculation method for the "balance of forces": environmental induced vessel motions / forces versus cargo lashing capacities

- Basic acceleration matrix for UNRESTIRCTED trades (read: Winter North Atlantic), valid for a ship of 100 meter length, 15 knots speed and a few other conditions....
- Corrections to be made for different parameters of length, speed, GM, etc.
- This matrix is the result of years of discussions, bright minds and a lot of common sense!

The balance of forces !

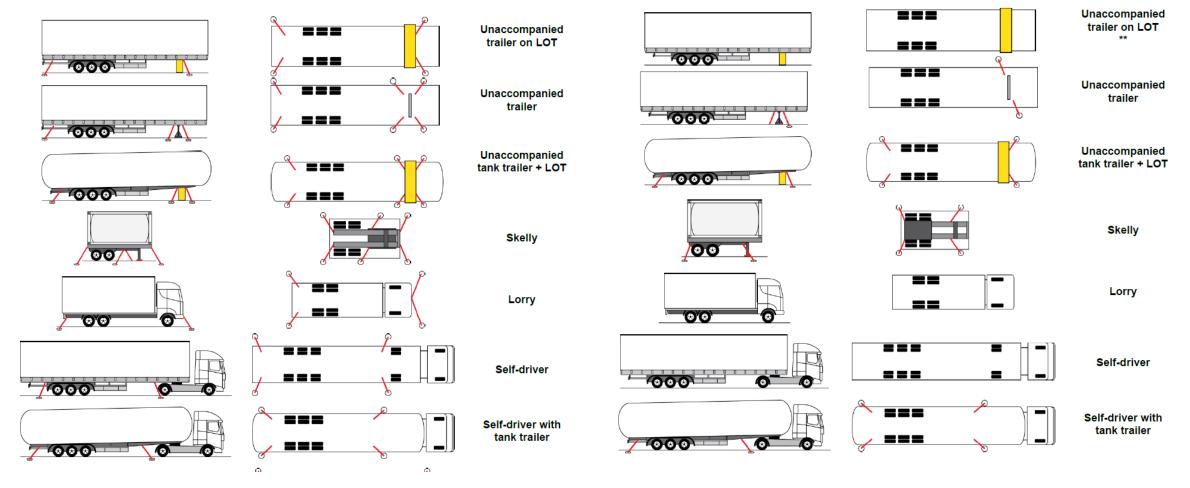
Amendment to the CSS code (2020) A Unified Interpretation of the Guidelines (Published by IMO in December 2020 as MSC.1/Circ.1623)

- A complete re-write of Annex 13 (Methods to assess the efficiency of securing arrangements for semi-standardized and non-standardized cargo)
- Specifically including Weather Dependent Lashing operations to reduce the IMO accelerations. Input for the reduction factor is Hs (Significant wave height) in the trading area
- The CSS code now also applies to heavy cargoes and towed transports (heavy cargoes and tows were excluded before)
- A new Appendix 4 to addresses RoRo operations (Friction + performance factor)
- IMO has requested all member states to implement these new guidelines

SIRIE MARINE SOLUTIONS IN MOTION

How can IMO accelerations be reduced during WDL operations (3 + 1 methods)

- 20 year return Hs on the trade route
- Forecasted Hs for voyages < 72 hours
- (this is the preferred method for short-sea)
- Seafastening design for a max Hs
- (This legalizes vessel routing!)
- Full scale monitoring results in irregular seas
- (This is the Siri Marine approach for RoRo / RoPax)
- Whenever WDL operations are carried out:
 - Weather conditions must be monitored
 - Vessel motions must be monitored & recorded



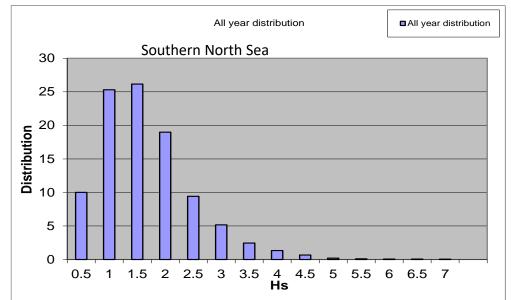
A "level playing field" for the RoRo / RoPax industry

- After 15 or more years of discusions, finally a unified interpretation of the CSS guidelines
- Applicable world-wide with only the significant wave height in the trade area as input (Providing the implementation by your Flag-state of the MSC.1/Circ.1623 amendment to the CSS Code)
- Clear instructions how a reduction to the IMO accelerations must be applied
- A more realistic matrix of friction coefficients (For the RoRo / RoPax only!) Increased to 0.45 for air-rubber tyres on a dry steel surface)
- And a "performance factor" specifically for RoRo / RoPax vessels

What can it do for you?

Heavy Lashing for Hs > 3,0 / 3,5 meter

Light Lashing for Hs < 3,0 / 3,5 meter

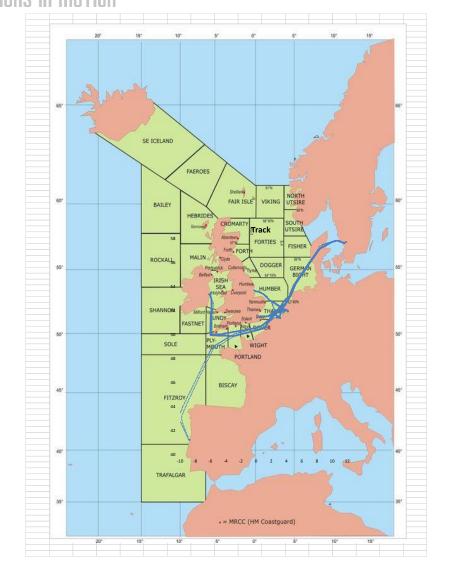

SIRI MARINE SOLUTIONS IN MOTION

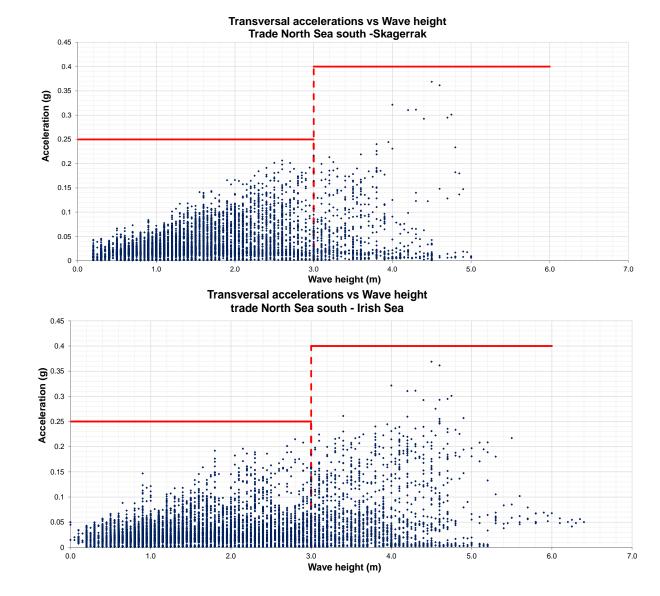
How do you define the limiting wave height for LIGHT lashing?

- The objective has been to allow 0 lashings for self-drivers and 2 lashings only for trailers on traditional trestles
- Full scale measurements over the past 18 years on > 90 RoRo / RoPax vessels have shown that a limiting wave height of approx. 3.0 meter Hs causes vessel motions that allow for LIGHT lashing application (2.5 for very small RoRo vessels, 3.5 for the larger RoRo/RoPax vessels)
- Recorded motions / accelerations are used in the calculations and provide sufficient safety margins
- Long term statistics show that Hs < 3.0 meter occurs in > 95% in Southern North Sea, Irish Sea, Italian coastal waters, Balearic Sea
- The Central North Sea & Skagerrak score > 90%; Bay of Biscay scores around 80%, but this is greatly influences by the winter months
- The percentages shown are all-year numbers
- To the best of my knowledge, cargo incidents have NOT occurred when LIGHT lashing was practised!

SIRI MARINE SOLUTIONS IN MOTION

Wave statistics examples


Central N	lorth Sea												
					Monthly dis								
lower	upper	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0.5	1.3	2	2.9	9.4	8	9.4	15.5	9.1	3.9	2.3	1.1	0.7
0.5	1	8.8	10.1	11.1	26.7	24.3	25.9	37.2	29.5	17.3	8.4	5.7	6.8
1	1.5	16.3	15	20	24.5	30.1	26.8	23.4	23.7	25.4	18.3	17	14.1
1.5	2	17.1	14.5	17.8	16.8	19.4	18.3	12.6	20.9	18.1	24.7	27.2	17.1
2	2.5	13.4	16.8	17.3	12	10.3	8.7	5.5	10.5	12.9	14.5	15.2	20.3
2.5	3	15.8	15	10.6	5.5	6.9	6.8	3.1	4.2	9	11.3	13.4	14
3	3.5	8.9	7.4	8.2	2.1	0.9	3.2	1.6	1.3	5.3	8.2	8.5	8.7
3.5	4	7.1	7.5	4.9	0.9	0.1	0.5	0.8	0.2	3.5	5.1	7	9.4
4	4.5	5.7	3.6	2.9	0.6	0	0.4	0.3	0.2	0.8	3.1	2.7	4.5
4.5	5	3.5	2.3	2.8	0.3	0	0.1	0	0.4	1.9	1.7	0.6	1.1
5	5.5	0.7	3.6	1.1	0.7	0	0	0	0	1.5	1	0.5	1.5
5.5	6	0.2	0.7	0.2	0.1	0	0	0	0	0.3	0.7	1.1	0.6
6	6.5	0.1	0.9	0	0.3	0	0	0	0	0	0.6	0	0.5
6.5	7	0.2	0.6	0	0	0	0	0	0	0	0.1	0	0.5
7	7.5	0.5	0	0	0	0	0	0	0	0	0	0	0
7.5	8	0.2	0	0	0	0	0	0	0	0	0	0	0
8	8.5	0	0	0	0	0	0	0	0	0	0	0	0
8.5	9	0.1	0	0	0	0	0	0	0	0	0	0	0
9	9.5	0	0	0	0	0	0	0	0	0	0	0	0
total		100	100	100	100	100	100	100	100	100	100	100	100
					Co	pyright ARGO	SS, January 20	006					
	% > 3,0 meter	27.2	26.6	20.1	5	1	4.2	2.7	2.1	13.3	20.5	20.4	26.8
	% > 3,5 meter	18.3	19.2	11.9	2.9	0.1	1	1.1	0.8	8	12.3	11.9	18.1


Golf of Genoa - 43.1N/8.6EE			10 & 100 y	year extreme: 5.6 & 6.8 m										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	All year	Hs<3.0m
0-0.5	1.65%	1.63%	1.93%	2.15%	3.38%	3.54%	4.17%	4.50%	3.87%	2.88%	1.73%	1.55%	32.97%	32.97%
0.5-1	2.35%	2.26%	2.53%	2.64%	2.66%	2.36%	2.19%	2.11%	2.17%	2.42%	2.34%	2.08%	28.10%	28.10%
1-1.5	1.82%	1.71%	1.75%	1.59%	1.30%	1.16%	1.14%	0.99%	1.15%	1.57%	1.82%	1.91%	17.90%	17.90%
1.5-2	1.25%	1.03%	1.02%	0.91%	0.64%	0.65%	0.55%	0.49%	0.52%	0.74%	1.12%	1.30%	10.22%	10.22%
2-2.5	0.74%	0.54%	0.58%	0.51%	0.26%	0.32%	0.27%	0.25%	0.29%	0.44%	0.61%	0.74%	5.56%	5.56%
2.5-3	0.38%	0.27%	0.39%	0.27%	0.15%	0.12%	0.13%	0.11%	0.14%	0.23%	0.35%	0.42%	2.95%	2.95%
3-3.5	0.18%	0.15%	0.19%	0.11%	0.06%	0.05%	0.03%	0.04%	0.04%	0.13%	0.14%	0.29%	1.41%	
3.5-4	0.07%	0.07%	0.07%	0.04%	0.02%	0.02%	0.01%	0.01%	0.02%	0.06%	0.07%	0.14%	0.59%	
4-4.5	0.03%	0.05%	0.02%		0.01%					0.02%	0.02%	0.05%	0.20%	
4.5-5	0.01%	0.02%	0.01%								0.01%	0.01%	0.07%	
5-5.5													0.00%	
5.5-6														
6-6.5														
6.5-7														
													99.96%	97.70%

SIRI MARINE

Full scale monitoring results

Note: full-scale monitoring results in acceleration forces that are approx. 40% lower than the reduction formula in the amended Annex 13 for Hs 3.0 m.

LIGHT vs HEAVY lashing

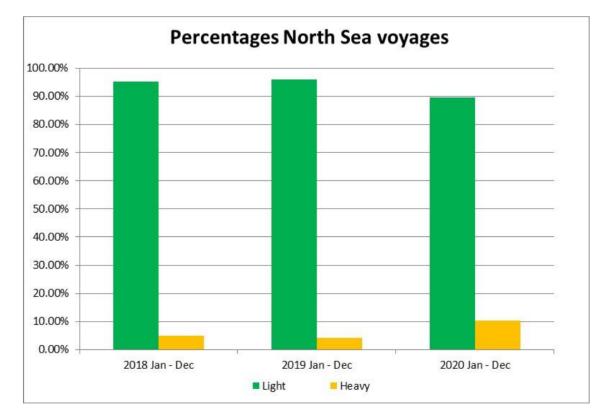

Class of vessel:	Name vessel:			%Heavy Lashing:		Voyages Heavy
		2018 Jan - Dec	95.17%	4.83%	276	14
		2019 Jan - Dec	95.92%	4.08%	235	10
		2020 Jan - Dec	89.58%	10.42%	275	32

Figure 1. Percentages Southern North Sea trade.

SIRi

NF

MARI

Your advantages

(The very obvious and the not-so obvious!) (Does WDL contribute to sustainability in the maritime industry?)

- Significant reduction in external lashing costs / stevedores
- Significant work-load reduction for your crews
- Reduction in turn-around time in port
- On-time departure > close the ramp immediately after the last selfdriver is on board
- On-time departure > Fuel consumption / CO2 reduction
- On-time departure > happy clients
- No waiting time for self-drivers on arrival
- Reduction in equipment maintenance / replacement
- Sustainability is more than fuel & CO2 reduction alone

What can we do for you?

- Involved in vessel motion monitoring and cargo safety since 2003. Launching Client in 2003: P&O Ferries on their North Sea routes
- A wealth of in-depth knowledge in WDL operations
- A huge data-base of vessel motions & weather data
- Provision of monitoring equipment & services
- Consultancy during start-up and implementation, optimize WDL operations, reporting
- More than 90 RoRo / RoPax vessels worldwide have Siri systems & services on board
- Assistance or writing of WDL documentation & approvals
- Training & instructions to on-shore and on-board staff
- Dedicated staff in a small transparent organisation

SIRI MARINE SOLUTIONS IN MOTION

Siri Light application

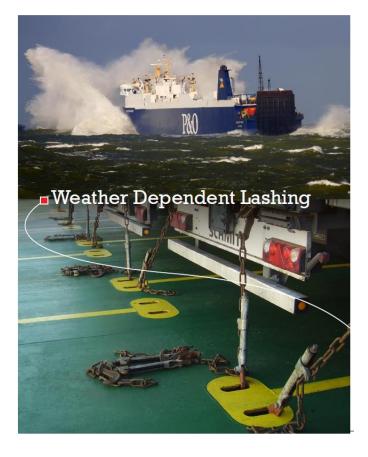
- Developed and designed for WDL operations
- In full compliance with the amended CSS code
- Simple installation & simple display
- Alarm functionality (traffic light)
- Remote access & support via Siri webportal
- Logging functionality
 - For voyage reporting
 - For incident investigations

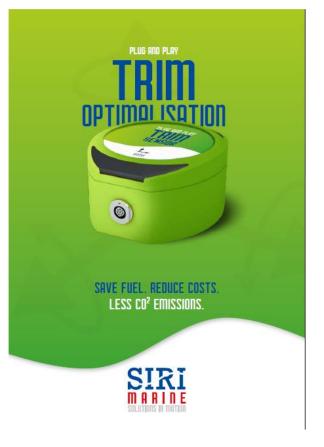
Work in progress

- Web application
 - Vessel routing and statistical or forecasted weather on the routes
 - Provision of reduction factors for the planned routes / trades
 - Provision of the reduced acceleration matrix
 - Calculation of seafastening / lashing of cargoes
- Until launched, all of the above can be provided by the Siri Marine staff on request
- By the way: based on the same technology and born from our practical knowledge, a new Siri TRIM optimization system has been developed

Implementation

- WDL sensor systems do NOT replace common sense and good seamanship
- Sensor systems, weather forecasting services, etc. are only tools to the Master to enable him/her to make the right decisions at the right time
- A word of caution:
 - Plan the implementation of WDL operations carefully
 - Get the on-board staff "on-board". Changes are often seen as threats
 - Start slowly, get feed-back, listen to concerns and react to questions




Thank you for your attention! Questions? We have a stand in the exhibition area. And this presentation plus all amended Annex 13 information can be emailed to you on request.

SIRI MARINE Solutions in motion

